Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch
نویسندگان
چکیده
Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling.
منابع مشابه
Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells
INTRODUCTION Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of th...
متن کاملExpression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells.
Expression of vascular endothelial growth factor (VEGF) is tightly regulated to achieve normal angiogenesis. The objective was to examine regulation of VEGF by the activin-like kinase receptors (ALKs) ALK1 and ALK5. Transforming growth factor beta1 (TGFbeta1) and bone morphogenetic protein-9 (BMP-9) enhanced and suppressed VEGF expression, respectively, in aortic endothelial cells, as determine...
متن کاملIncrease in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice.
During osteoarthritis (OA) chondrocytes show deviant behavior resembling terminal differentiation of growth-plate chondrocytes, characterized by elevated MMP-13 expression. The latter is also a hallmark for OA. TGF-beta is generally thought to be a protective factor for cartilage, but it has also displayed deleterious effects in some studies. Recently, it was shown that besides signaling via th...
متن کاملNRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells
Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodi...
متن کاملThe Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.
Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015